My learning in Migration of MySQL from 5.7 to 8.0

Introduction

In this blog, join me on a voyage through my personal experience my journey of Migrating MySQL from version 5.7 to 8.0. This voyage was motivated by the desire to harness the latest features, bolster security, and unlock the performance enhancements that MySQL 8.0 offers. As we navigate through the intricate migration process, I’ll share the valuable lessons learned, the hurdles encountered, and the strategies employed to overcome them.

Continue reading “My learning in Migration of MySQL from 5.7 to 8.0”

Automatically Backup Alibaba MySQL using Grandfather-Father-Son Strategy

 

So, basically what is Grandfather-father-son or GFS?

GFS backup is a common rotation scheme for backup, in which there are three or more backup cycles, such as daily, weekly, and monthly. Typically, It consists of daily backups (son, at fixed intervals of hours in a day), a weekly full backup (father, once a week), and monthly full backup (Grandfather, once a month).

Continue reading “Automatically Backup Alibaba MySQL using Grandfather-Father-Son Strategy”

The Concept Of Data At Rest Encryption In MySql

Word “data” is very crucial since early 2000 and within a span of these 2 decades is it becoming more crucial. According to Forbes Google believe that in future every organisation will lead to becoming a data company. Well, when it comes to data, security is one of the major concerns that we have to face. 

We have several common techniques to store data in today’s environment like MySql, Oracle, MsSql, Cassandra, Mongo etc and these techs will keep on changing in future. But according to DataAnyz, MySql Still has a 33% share of the market. So here we are with a technique to secure our MySQL data.

Before getting more into this article, let us know what are possible combined approaches to secure MySQL data 

  1. Mysql Server hardening
  2. Mysql Application-level hardening
  3. Mysql data encryption at transit
  4. Mysql data at rest encryption
  5. Mysql Disk Encryption

You may explore all the approaches but in this article, we will understand the concept of Mysql data at encryption and hands-on too.

The concept of  “Data at Rest Encryption”  in MySQL was introduced in Mysql 5.7 with the initial support of InnoDB storage engine only and with the period it has evolved significantly. So let’s understand about “Data at Rest Encryption” in MySQL 

What is “Data at Rest Encryption”  in MySql?

The concept of  “data at rest encryption” uses two-tier encryption key architecture, which used below two keys 

  1. Tablespace keys: This is an encrypted key which is stored  in the tablespace header 
  2. Master Key: the Master key is used to decrypt the tablespace keys

So let’s Understand its working

Let’s say we have a running MySQL with InnoDB storage engine and tablespace is encrypted using a key, referred as table space key. This key is then encrypted using a master key and stored in the tablespace header 

Now when a request is made to access MySQL data, InnoDB use master key to decrypt tablespace key present tablespace header. After getting decrypted tablespace key, the tablespace is decrypted and make is available to perform read/write operations

Note: The decrypted version of a tablespace key never changes, but the master key can be rotated.

Data at rest encryption implemented using keyring file plugin to manage and encrypt the master key

After understanding the concept of encryption and decryption below are few Pros and Cons for using  DRE

Pros:

  • A strong Encryption of AES 256 is used to encrypt the InnoDB tables
  • It is transparent to all applications as we don’t need any application code, schema, or data type changes
  • Key management is not done by DBA.
  • Keys can be securely stored away from the data and key rotation is very simple.

Cons:

  • Encrypts only  InnoDB tables
  • Can’t encrypt  binary logs, redo logs, relay logs on unencrypted slaves, slow log, error log, general log, and audit log

Though we can’t encrypt binary logs, redo logs, relay logs on Mysql 5.7 but MariaDB has implemented this with a mechanism to encrypt undo/redo logs, binary logs/relay logs, etc.  by enabling few flags in MariaDB Config File

innodb_sys_tablespace_encrypt=ON
innodb_temp_tablespace_encrypt=ON
innodb_parallel_dblwr_encrypt=ON
innodb_encrypt_online_alter_logs=ON
innodb_encrypt_tables=FORCE
encrypt_binlog=ON
encrypt_tmp_files=ON

However, there are some limitations 

Let’s Discuss its problem/solutions and few solutions to them

  1. Running MySQL on a host will have access from root user and the MySQL user and both of them may access key file(keyring file) present on the same system. For this problem, we may have our keys on mount/unmount drive which can be unmounted after restarting MySQL.
  2. Data will not be in encrypted form when it will get loaded onto the RAM and can be dumped and read
  3. If MySQL is restarted with skip-grant-tables then again it’s havoc but this can be eliminated using an unmounted drive for keyring
  4.  As tablespace key remains the same so our security relies on Master key rotation which can be used  to save our master key 

NOTE: Do not to lose the master key file, as we cant decrypt data and will suffer data loss

Doing Is Learning, so let’s try 

As a prerequisite, we need a machine with MySQL server up and running Now for data at rest encryption to work we need to enable 

Enable file per table on with the help of the configuration file.  

 
[root@mysql ~]#  vim /etc/my.cnf
[mysqld]

innodb_file_per_table=ON

Along with the above parameter, enable keyring plugin and keyring path. This parameter should always be on the top in configuration so that it will get load initially when MySQL starts up. Keyring plugin is already installed in MySQL server we just need to enable it. 

[root@mysql ~]#  vim /etc/my.cnf
[mysqld]
early-plugin-load=keyring_file.so
keyring_file_data=/var/lib/mysql/keyring-data/keyring
innodb_file_per_table=ON

And save the file with a restart to MySQL

[root@mysql ~]#  systemctl restart mysql

We can check for the enabled plugin and verify our configuration.

mysql> SELECT plugin_name, plugin_status FROM INFORMATION_SCHEMA.PLUGINS WHERE plugin_name LIKE 'keyring%';
+--------------+---------------+
| plugin_name  | plugin_status |
+--------------+---------------+
| keyring_file | ACTIVE        |
+--------------+---------------+
1 rows in set (0.00 sec)


verify that we have a running keyring plugin and its location

mysql>  show global variables like '%keyring%';
+--------------------+-------------------------------------+
| Variable_name      | Value                 |
+--------------------+-------------------------------------+
| keyring_file_data  | /var/lib/mysql/keyring-data/keyring |
| keyring_operations | ON                                  |
+--------------------+-------------------------------------+
2 rows in set (0.00 sec)

Verify that we have enabled file per table 

MariaDB [(none)]> show global variables like 'innodb_file_per_table';
+-----------------------+-------+
| Variable_name         | Value |
+-----------------------+-------+
| innodb_file_per_table | ON   |
+-----------------------+-------+
1 row in set (0.33 sec)

Now we will test our set up by creating a test DB with a table and insert some value to the table using below commands 

mysql> CREATE DATABASE test_db;
mysql> CREATE TABLE test_db.test_db_table (id int primary key auto_increment, payload varchar(256)) engine=innodb;
mysql> INSERT INTO test_db.test_db_table(payload) VALUES('Confidential Data');

After successful test data creation, run below command from the Linux shell to check whether you’re able to read InnoDB file for your created table i.e. Before encryption

Along with that, we see that our keyring file is also empty before encryption is enabled

[root@mysql ~]#  strings /var/lib/mysql/test_db/test_db_table.ibd
infimum
supremum
Confidential DATA

 

At this point of time if we try to check our keyring file we will not find anything

[root@mysql ~]#  cat /var/lib/mysql/keyring
[root@mysql ~]# 

Now let’s encrypt our table with below command and check our InnoDB file and keyring file content.

mysql> ALTER TABLE test_db.test_db_table encryption='Y';
[root@mysql ~] strings /var/lib/mysql/test_db/test_db_table.ibd
0094ca6d-7ba9-11e9-b0d0-0800275716d42QMw

The above content clear that file data is not readable and table space is encrypted. As previously oy keyring file data was absent/empty, so now it must be having some data.

 Note: Please look  master Key and time stamp(we will implement key rotation )

[root@mysql ~]  cat /var/lib/mysql/keyring-data/keyring
Keyring file version:1.0?0 INNODBKey-0094ca6d-7ba9-11e9-b0d0-0800275716d4-2AES???_gd?7m>0??nz??8M??7Yʹ:ll8@?0 INNODBKey-0094ca6d-7ba9-11e9-b0d0-0800275716d4-1AES}??x?$F?z??$???:??k?6y?YEOF
[root@mysql ~] ls -ltr /var/lib/mysql/keyring-data/keyring
-rw-r----- 1 mysql mysql 283 Sep 18 16:48 /var/lib/mysql/keyring-data/keyring

With known security concern for the compromised master key, we may use the master key rotation technique from time to time to save our key.

mysql> alter instance rotate innodb master key;
Query OK, 0 rows affected (0.00 sec)

After this command, we realise that our key timestamp is changed now and we have a new key. 

[root@mysql ~] ls -ltr /var/lib/mysql/keyring-data/keyring
-rw-r----- 1 mysql mysql 411 Sep 18 18:17 /var/lib/mysql/keyring-data/keyring

Some Useful Commands

Below are some helpful commands we may use in an encrypted system 

1. List All the tables with encryption enabled 

mysql> SELECT * FROM information_schema.tables WHERE create_options LIKE '%ENCRYPTION="Y"%' \G;
*************************** 1. row ***************************
TABLE_CATALOG: def
TABLE_SCHEMA: sample_db
TABLE_NAME: test_db_table
TABLE_TYPE: BASE TABLE
ENGINE: InnoDB
VERSION: 10
ROW_FORMAT: Dynamic
TABLE_ROWS: 0
AVG_ROW_LENGTH: 0
DATA_LENGTH: 16384
MAX_DATA_LENGTH: 0
INDEX_LENGTH: 0
DATA_FREE: 0
AUTO_INCREMENT: 2
CREATE_TIME: 2019-09-18 16:46:34
UPDATE_TIME: 2019-09-18 16:46:34
CHECK_TIME: NULL
TABLE_COLLATION: latin1_swedish_ci
CHECKSUM: NULL
CREATE_OPTIONS: ENCRYPTION="Y"
TABLE_COMMENT: 
1 row in set (0.02 sec)

ERROR: 
No query specified

2. Encrypt Tables in a Database 

mysql> ALTER TABLE db.t1 ENCRYPTION='Y';

3. Disable encryption for an InnoDB table

mysql> ALTER TABLE t1 ENCRYPTION='N';

Conclusion : 

You can encrypt data at rest by using keyring plugin and we can control and manage it by master key rotation. Creating an encrypted Mysql data file setup is as simple as firing a few simple commands. Using an encrypted system is also transparent to services, applications, and users with minimal impact of system resources. Further with Encryption of data at rest, we may also implement encryption in transit. 

I hope you found this article informative and interesting. I’d really appreciate any and all feedback.

Stay Away Replication Lag !

Recently, I got a requirement to facilitate backup for the data and a way to analyze it without using the main database. MySQL replication is a process that allows you to easily maintain multiple copies of MySQL data by having them copied automatically from a master to a slave database. 

Panic Starts

Everything was running smoothly in the night I configured it. But the joy didn’t last for long as the traffic hits in the morning, slave starts getting behind the master with few seconds which increases with the activity on the application. At the peak time, it was playing in thousands of second.

 What now, I had to dig deep into MySQL Replication

  • How it works 
  • What can probably cause the lag
  • An approach that minimizes or eliminates it

How MySQL Replication Works

On the master

First of all, master writes replication events to a special log called binary log. This is usually a very lightweight activity because writes are buffered and they are sequential. The binary log file stores data that replication slave will be reading later.

On the replica

When you start replication, two threads are started on the slave:
1. IO thread
This process connects to a master, reads binary log events from the master as they come in and just copies them over to a local log file called relay log.
Even though there’s only one thread reading the binary log from the master and one writing relay log on the slave, very rarely copying of replication events is a slower element of the replication. There could be a network delay, causing a steady delay of a few hundred milliseconds.
If you want to see where IO thread currently is, check the following in “show slave status \G”
Master_Log_File – last file copied from the master (most of the time it would be the same as last binary log written by a master)
Read_Master_Log_Pos – binary log from the master is copied over to the relay log on the slave up until this position.
And then you can compare it to the output of “show master status/G” from the master.

mysql> show master status\G;
*************************** 1. row ***************************
             File: db01-binary-log.000032
         Position: 1008761891
     Binlog_Do_DB: 
 Binlog_Ignore_DB: 
Executed_Gtid_Set: 
1 row in set (0.00 sec)

2. SQL thread
The second process – SQL thread – reads events from a relay log stored locally on the replication slave (the file that was written by IO thread) and then applies them as fast as possible.
Going back to “show slave status /G”, you can get the current status of SQL thread from the following variables:
Relay_Master_Log_File – binary log from the master, that SQL thread is “working on” (in reality it is working on relay log, so it’s just a convenient way to display information)
Exec_Master_Log_Pos – which position from the master binary log is being executed by SQL thread.

mysql> show slave status\G;
*************************** 1. row ***************************
               Slave_IO_State: Waiting for master to send event
                  Master_Host: <master_ip>
                  Master_User: <replication_user>
                  Master_Port: 3306
                Connect_Retry: 60
              Master_Log_File: db01-binary-log.000032
          Read_Master_Log_Pos: 1008768810
               Relay_Log_File: relay-bin.000093
                Relay_Log_Pos: 1008769035
        Relay_Master_Log_File: db01-binary-log.000032
             Slave_IO_Running: Yes
            Slave_SQL_Running: Yes
.
.
          Exec_Master_Log_Pos: 1008768810
              Relay_Log_Space: 1008769305
.
.
        Seconds_Behind_Master: 0
.
.
      Slave_SQL_Running_State: Slave has read all relay log; waiting for more updates
.
.
1 row in set (0.00 sec)

Why Replication Lag Occurred

Replication lag occurs when the slaves cannot keep up with the updates occurring on the master. Unapplied changes accumulate in the slave’s relay logs and the version of the database on the slaves becomes increasingly different from that of the master.

Caught The Culprit

Let me take you through my journey how I crossed the river. 
First, I took the reference to multiple blogs and started gobbling my mind with possible reasons suggesting 

  • Hardware Faults (getting RAID in degraded mode)
  • MySQL Config Updates 
    • setting sync_binlog=1
    • enabling log_slave_updates
    • setting innodb_flush_log_at_trx_commit=1
    • updating slave_parallel_workers to a higher value
    • changing slave_parallel_type to support more parallel workers
  • Restarting Replication 

But unfortunately, or say, it was my benightedness towards Database Administration that I was still searching for that twig which can help me from drowning.
And finally, I found one, my DBA friend who suggested me to look for the Binary Log Format that I am using. Let’s see what it is

Binary Logging Formats

The server uses several logging formats to record information in the binary log. The exact format employed depends on the version of MySQL being used. There are three logging formats:
STATEMENT: With statement-based replication, every SQL statement that could modify data is logged on the master. Then those SQL statements are replayed on the slaves against the same dataset and in the same context. There is always less data that is to be transferred between the master and the slave. But, the data inconsistency issue between the master and the slave that creeps up due to the way this kind of replication works.
ROW: With row-based replication, every “row modification” is logged on the master and is then applied to the slave. With row-based replication, each and every change can be replicated and hence this is the safest form of replication. On a system that frequently UPDATE a large number of rows, it produces very large update logs and generates a lot of network traffic between the master and the slave.
MIXED: A third option is also available: mixed logging. With mixed logging, statement-based logging is used by default, but the logging mode switches automatically to row-based in certain cases.

Changing Binary Log Format

The Binary Log Format is updated on Master MySQL server and requires MySQL service restart to reflect. It can be done for Global, Runtime or Session.

  • set at runtime with –binlog-format=format
  • setting the global (with the SUPER privilege)
  • session value of the binlog_format server variable
mysql> SET GLOBAL binlog_format=MIXED;

mysql> SET SESSION binlog_format=ROW;

mysql> SET binlog_format=STATEMENT; 

So, earlier I was using STATEMENT BinLog Format, which is default one. Since I switched to MIXED BinLog Format, I am very delighted to share the below stats.
Current status of  Master Read and Slave Execute position difference and Slave Lag (in sec), both are ZERO.

Replication Lag (in Seconds) graph for a month, powered by Prometheus-Grafana.

Now, What’s next ??

Setting up MySQL Monitoring with Prometheus

One thing that I love about Prometheus is that it has a multitude of Integration with different services, both officially supported and the third party supported.
Let’s see how can we monitor MySQL with Prometheus.

Those who are the starter or new to Prometheus can refer to our this blog.

MySQL is a popular opensource relational database system, which exposed a large number of metrics for monitoring but not in Prometheus format. For capturing that data in Prometheus format we use mysqld_exporter.

I am assuming that you have already setup MySQL Server.

Configuration changes in MySQL

For setting up MySQL monitoring, we need a user with reading access on all databases which we can achieve by an existing user also but the good practice is that we should always create a new user in the database for new service.
CREATE USER 'mysqld_exporter'@'localhost' IDENTIFIED BY 'password' WITH MAX_USER_CONNECTIONS 3;
After creating a user we simply have to provide permission to that user.
GRANT PROCESS, REPLICATION CLIENT, SELECT ON *.* TO 'mysqld_exporter'@'localhost';

Setting up MySQL Exporter

Download the mysqld_exporter from GitHub. We are downloading the 0.11.0 version as per latest release now, change the version in future if you want to download the latest version.

wget https://github.com/prometheus/mysqld_exporter/releases/download/v0.11.0/mysqld_exporter-0.11.0.linux-amd64.tar.gz

Then simply extract the tar file and move the binary file at the appropriate location.
tar -xvf mysqld_exporter-0.11.0.linux-amd64.tar.gz
mv mysqld_exporter /usr/bin/
Although we can execute the binary simply, but the best practice is to create service for every Third Party binary application. Also, we are assuming that systemd is already installed in your system. If you are using init then you have to create init service for the exporter.

useradd mysqld_exporter
vim /etc/systemd/system/mysqld_exporter.service
[Unit]
Description=MySQL Exporter Service
Wants=network.target
After=network.target

[Service]
User=mysqld_exporter
Group=mysqld_exporter
Environment="DATA_SOURCE_NAME=mysqld_exporter:password@unix(/var/run/mysqd/mysqld.sock)"
Type=simple
ExecStart=/usr/bin/mysqld_exporter
Restart=always

[Install]
WantedBy=multi-user.target
You may need to adjust the socket location of Unix according to your environment
If you go and visit the http://localhost.com:9104/metrics, you will be able to see them.

Prometheus Configurations

For scrapping metrics from mysqld_exporter in Prometheus we have to make some configuration changes in Prometheus, the changes are not fancy, we just have to add another job for mysqld_exporter, like this:-
vim /etc/prometheus/prometheus.yml
  - job_name: 'mysqld_exporter'
    static_configs:
      - targets:
          - :9104
After the configuration changes, we just have to restart the Prometheus server.

systemctl restart prometheus

Then, if you go to the Prometheus server you can find the MySQL metrics there like this:-

So In this blog, we have covered MySQL configuration changes for Prometheus, mysqld_exporter setup and Prometheus configuration changes.
In the next part, we will discuss how to create a visually impressive dashboard in Grafana for better visualization of MySQL metrics. See you soon… 🙂